

高重频全固态掺镱飞秒激光放大器研究进展

白川1,田文龙1,王阁阳1,郑立1,徐瑞1,张大成1,王兆华2,朱江峰1*,魏志义2

1西安电子科技大学物理与光电工程学院,陕西 西安 710071;

²中国科学院物理研究所北京凝聚态物理国家实验室,北京 100190

摘要 高重频全固态掺镱飞秒激光放大器在工业超快非热微加工、极紫外光学频率梳、高通量高次谐波产生、角分 辨电子动量谱等领域有着重要的作用。首先总结了高重复频率飞秒激光放大面临的增益介质热管理和增益窄化 效应等关键技术瓶颈,并对近年来不同掺镱晶体全固态再生放大和行波放大技术的参数特点、适用范围及研究进 展进行了梳理。最后展望了基于新型掺镱激光介质的全固态高功率飞秒激光放大器。

关键词 激光光学;高重复频率;再生放大器;行波放大器;掺镱激光介质

中图分类号 TN216 文献标志码 A

doi: 10.3788/CJL202148.0501005

1 引 言

1985 年, Gerard Mourou 和 Donna Strickland 发明的啁啾脉冲放大(CPA)技术^[1]为飞秒激光能量 的提升提供了可靠的思路,两人也因此获得 2018 年 诺贝尔物理学奖。结合 CPA 技术,钛宝石飞秒放大 器得到了十足的发展,输出脉冲能量达到焦耳量级, 峰值功率可到拍瓦量级,在阿秒科学及强场物理等 领域获得广泛应用。例如,具有周期量级脉宽的飞 秒钛宝石激光与惰性气体相互作用,已产生小于 100 as 的脉冲^[2-3]。同时,kHz 量级重复频率、mJ 量 级能量的飞秒钛宝石激光系统驱动高温高密等离子 体,获得了强度高达千特斯拉(kT)量级、自组织放 大的强磁场阵列^[4]。然而,由于钛宝石激光系统泵 浦功率、热管理及上能级寿命的限制,平均功率的提 升十分困难,重复频率也被限制在1~20 kHz,使得 钛宝石激光系统在 XUV 光学频率梳^[5]、角分辨电 子动量谱仪(ARPES)^[6]、光发射电子显微镜 (PEEM)^[7]、高通量高次谐波产生^[8]等领域的应用 受到一定的限制。

近年来,出现的二极管泵浦掺镱离子(Yb³⁺)的

全固态飞秒激光器为高功率高重复频率超短脉冲激 光的产生开辟了新的路径。Yb³⁺作为能级较简单 的激活离子,理论上不存在激发态吸收和上转换过 程;因其 940~980 nm 的吸收波长与砷化铟镓 (InGaAs)激光二极管(LD)发射波长相匹配,不仅 可以极大地降低成本,而且可保证足够的泵浦功率; 高达 95%的量子效率和优良的热导率使得 Yb 激光 器在高功率输出方面也表现出明显的优势,基于板 条^[9]、薄片^[10]和光纤^[11]等增益介质的激光放大器的 平均功率已达到 kW 量级;除此之外,在短脉冲方 面,由于 Yb 离子能级分裂产生的发射谱宽可达几 十个纳米,足以支持小于 100 fs 的超短脉冲激光输 出^[12-13]。从 20 世纪 90 年代开始,随着二极管泵浦 技术的迅速发展,掺 Yb 材料的激光放大器逐渐成 为高功率固体激光领域的研究热点。

本文将从高重复频率飞秒激光放大器的方法原 理出发,分析实现高重复频率超短脉冲激光的技术 挑战;针对不同的增益介质、放大方式,对近年来国 际上高重频飞秒激光放大器的技术路线和研究进展 进行综述;最后对输出平均功率大于100 W、脉冲宽 度为 fs 量级的全固态放大器进行展望。

* E-mail: jfzhu@xidian. edu. cn

收稿日期: 2020-11-02; 修回日期: 2020-12-06; 录用日期: 2020-12-21

基金项目:科技部重点研发计划(2016YFB0402105, 2017YFB0405202)、国家自然科学基金(11774277, 61705174)、陕 西省自然科学基础研究计划(2019JCW-03)、中央高校基本科研业务费(JB190501, ZD2006)

综 述

2 高重频再生放大研究

2.1 再生放大技术简介

再生放大器的工作原理如图 1 所示,由具有一 个调Q电光开关元件的谐振腔构成,用于在种子脉 冲序列中选出单个脉冲。将单个脉冲注入到该谐振 腔内,通过对脉冲进行时域控制和空域模式匹配,放 大脉冲在腔内几十次甚至上百次通过激光介质以提 取储能,待能量达到最大时从腔内导出,最后得到能 量达 μJ 甚至 mJ 量级的放大脉冲。

Fig. 1 Schematic of regenerative amplifier

再生放大器的出现,使得超短脉冲激光的能量 得到进一步提升,很低的入射激光能量也能在多次 往返放大中实现足够大的增益。但对于高重复频率 的再生放大器而言,一方面放大器的重复频率受限 于电光开关的开关速度,一般不会超过2 MHz;另 一方面,随着重复频率的提升,脉冲时间间隔缩 短,同时受限于普克尔盒高压电源的高压占空比 (一般<30%),为保证种子光脉冲在再生腔中有 足够往返次数,高重频再生放大器需要采取短腔 设计,因此腔长也是制约重复频率的主要因素。 除此之外,过高的重复频率对脉冲的能量萃取提 出新的挑战,如Yb增益介质的上能级寿命大多大 于 200 µs^[14],在高重复频率下采用连续光泵浦,可 能会使抽运阶段没有足够的时间来恢复稳定的反 转粒子数,破坏了放大过程所消耗的反转粒子数 和抽运阶段增加的反转粒子数之间的平衡,致使 相邻再生放大脉冲之间相互影响,出现倍周期分 叉现象[15]。而随着腔内激光能量和连续光泵浦功 率的提升,热效应成为限制高功率飞秒放大输出 的主要原因,由于材料的折射率随着温度变化而 发生变化,在增益介质中按温度梯度分布导致热 透镜[16]和热致双折射[17]等热积累问题会使再生 腔模式发生改变,甚至使再生腔进入不稳定区域, 严重影响其输出功率和光束质量。抑制热效应主 要有三种途径,一是主动降温来减少热积累[18],二

是增加再生腔的热不敏感性^[19],三是采用相应的 手段去补偿热透镜带来的影响^[20]。不仅如此,随 着功率的进一步提升,过高的功率密度可能引起 介质电离,甚至破坏放大器中的增益介质和光学 元件^[21]。

虽然再生放大器可以大幅提升脉冲能量,但是 由于在增益带宽内对输入脉冲不同频谱分量的增益 不同,输入脉冲光谱在多次增益后有损失,即存在增 益窄化效应^[22]。腔内多个色散元件引入的高阶色 散也会影响输出脉冲的时域特性,因此为了使最终 得到的放大脉冲能够保持与种子脉冲一致的时间质 量特性,需要在放大过程中对种子脉冲的频谱、光谱 相位及各阶啁啾进行精确的控制。其中光谱整形、 腔内插入双折射滤波片及非线性放大技术等是补偿 增益窄化效应的有效手段。

增益介质特性、腔型结构、热效应、器件性能等诸多方面都会影响放大器的输出特性,其中 增益介质特性是主要因素,基于不同增益介质的 再生放大器在结构和功能上都会有较大的差 异。Yb飞秒放大器中常用的增益晶体有 Yb:YAG^[23]、Yb:KGW/Yb:KYW^[24-25]、Yb: CaF₂^[26]以及Yb:CALGO(Yb:CGA)^[27]等,基本 参数如表1所示,其中τ为上能级寿命、 $\sigma_{a,p}$ 为泵浦 光吸收截面、 $\sigma_{e,l}$ 为激光发射截面、 $\Delta\lambda$ 为增益带宽、 K为热导率。

	,	Table 1 Basic propertie	Basic properties of Yb-doped laser materials $f(10^{-20} \cdot \text{cm}^2) = \sigma_{e,1}/(10^{-20} \cdot \text{cm}^2) = \Delta \lambda / \text{nm} = K / (W \cdot m^{-1} \cdot K^{-1})$						
Laser material	$ au$ / μs	$\sigma_{\rm a,p}/(10^{-20} \cdot {\rm cm}^2)$	$\sigma_{\rm e,l}/(10^{-20} \cdot {\rm cm}^2)$	$\Delta\lambda$ /nm	$K / (W \cdot m^{-1} \cdot K^{-1})$				
Yb : $YAG^{[23]}$	951	0.75	2.1	10-11	5.7				
$Yb : KGW^{[24]}$	$\sim\!600$	12	2.8	20	3.3				
$\mathrm{Yb}:\mathrm{KYW}(n_{\mathrm{m}})^{[25]}$	600	13.3	3.0	16	3.3				
$Yb : CaF_2^{[26]}$	2400	0.54	0.25	70	9.7				
Yb : CALGO ^[27]	420	1.0(a)	0.75(a)	80	6.3				

表1 Yb 掺杂激光材料的基本性质

2.2 基于 Yb: YAG 的再生放大研究

Yb:YAG,分子式为 Yb_{3r}:Y_{3-3r} Al₅O₁₂,属立方 晶系。在 940 nm 和 969 nm 处具有较强的吸收谱线, 其中 940 nm 处吸收截面最大,且该波长处的吸收带 宽高达18 nm,因此激光二极管不需要复杂的控温系 统。此外,Yb:YAG 拥有 5.7 W·m⁻¹·K⁻¹ 的热 导率和 951 µs 的上能级粒子数寿命,非常容易产生高 功率激光脉冲。在重复频率为100 kHz的情况下,基 于块状 Yb: YAG 晶体的再生放大器于 2008 年和 2013年分别实现了平均功率达10W和20W的高重 频激光再生放大输出^[18]。

然而传统块状结构的晶体热管理困难,限制了 其平均功率进一步的提升。为了获得更高的平均功 率,人们发展了散热性能更加优越的薄片激光技 术[28],其热管理如图 2 所示。薄片激光器的增益介 质厚度通常只有 100~400 µm,大的体表比可以有 效促进介质的散热,且在激光提取过程中,激光传播 方向与温度梯度方向重合,则在一阶近似的条件下, 光束波前不会受到温度梯度的影响,从而保证了在 高重复频率下的高单脉冲能量^[29]。

图 2 薄片散热示意图

Fig. 2 Heat dissipation schematic of thin disk 2009年,Metzger 等^[30]使用 Yb: YAG 薄片作 为增益介质,采用20程泵浦结构,实现了平均功率 为75W、重复频率为3kHz、单脉冲能量为25mJ、 脉冲宽度为 1.6 ps 的激光脉冲输出。由于脉冲的

重复周期(333 μs)小于材料荧光寿命(951 μs),每 次放大后上能级粒子数未能恢复,放大过程中出现 了倍周期分叉效应[15],严重影响放大脉冲的稳定 性。但 2007 年, Grishin 等^[31]已通过理论模拟和实 验验证了种子光脉冲能量、小信号增益是影响倍周 期分叉现象的主要因素,故 Metzger 等^[30]在实验中 加入光纤放大器作为预放大级,提高种子能量,并对 泵浦功率进行调节,从而改变小信号增益,最终脉冲 能量的波动低于 0.7%。2015 年, Smrž 等^[32]引入基 于啁啾体布拉格光栅(CVBG)的展宽压缩装置,种子 光经 CVBG 展宽至 150 ps 后注入到基于 Yb: YAG 晶体的薄片再生放大器中,随后经 CVBG 压缩得到 平均功率为 95 W、重复频率为 100 kHz、单脉冲能量 为 0.95 mJ、脉冲宽度为 1.9 ps 的高重频激光脉冲输 出。2019年,Krötz等^[33]利用双薄片的Yb:YAG晶 体环形再生放大器,获得了重复频率为 20 kHz、平 均功率为1.9 kW的高功率激光放大输出。虽然基 于 Yb: YAG 薄片的再生放大器在高功率输出方面 表现优秀,但其发射带宽仅仅~10 nm,由于增益窄 化效应的影响,很难直接获得亚皮秒的超短脉冲输 出。缓解增益窄化效应的一种有效手段是采用非线 性放大方式,即控制脉冲啁啾、自相位调制和色散的 相互作用,随着放大过程中能量的提升,自相位调制 渐渐抵消增益窄化效应,并最终占主导地位,经放大 光谱将得到一定程度的展宽[34-35]。2015年, Pouysegur 等^[35] 报道了基于 Yb: YAG 薄片的非 线性再生放大器,实现了脉冲宽度为 300 fs、重复频 率为 100 kHz、平均功率为 36 W 的高功率飞秒激 光输出。2016年, Ueffing等^[36]将单脉冲能量为 0.8 nJ、脉冲宽度为 106 fs 的种子脉冲展宽至 2 ps, 并注入到基于 Yb: YAG 薄片的再生放大器中,利 用非线性放大技术,通过 30 片啁啾镜补偿自相位调 制引入的额外啁啾量,最终获得平均功率为200W、 重复频率为 100 kHz、单脉冲能量为 2 mJ、脉冲宽 度为 210 fs 的高重频飞秒激光输出。

2.3 基于 Yb: KGW/Yb: KYW 的再生放大研究 $Yb : KGW/Yb : KYW, \square Yb : KGd(WO_{4})_{2}$ 与 Yb: KY(WO₄)2 晶体具有高达 2.8×10⁻²⁰ cm² 与 3.0×10⁻²⁰ cm² 的增益截面、50 GW/cm² 的损伤 阈值及~18 nm 的增益光谱带宽^[23-24],适合实现大 能量(>1 mJ)、短脉冲宽度(<200 fs)的飞秒激光 放大,但如果不对增益窄化效应进行抑制,脉冲宽 度往往限制在 300 fs 以上^[37-39]。除非线性放大技 术外,对种子光进行光谱整形是抑制增益窄化效应 的另一种方法^[40]。比如,利用 Yb: KGW 与 Yb: KYW 晶体不同光轴发射光谱范围不同的特 性,通过两块轴向正交放置的 Yb:KGW 或 Yb: KYW 晶体,增益谱峰值交叉,可以有效抑制放大过 程中的增益窄化效应^[41]。2007年, Stu cinskas 等^[42]采用基于双 Yb: KGW 晶体的再生腔,每块晶 体由 2 个平均功率为 50 W 的 LD 泵浦,在 100 kHz 重复频率下获得平均功率为 30 W 的激光放大输 出,同时光谱宽度为 5.4 nm,对应小于 300 fs 的脉 冲宽度。2013年,Kim 等^[43]将平均功率为1.6W、 脉冲宽度为 100 fs、重复频率为 76 MHz 的种子脉 冲展宽后注入到基于2块不同切割方向的5%掺杂 的 Yb: KGW 晶体的再生放大腔中,压缩后获得重 复频率为 500 kHz、单脉冲能量为 15 μJ、脉冲宽度 为 267 fs 的高重频放大激光输出。同年,他们^[44]将 脉冲宽度为 110 fs、单脉冲能量为 10 nJ、光谱宽度 为 9 nm 的种子源展宽,并使用干涉滤波器进行光 谱整形后,注入到基于双 Yb: KYW 晶体的再生放 大器中,获得了重复频率为 500 kHz、单脉冲能量为 17.4 µJ、脉冲宽度为 182 fs 的高重频超短脉冲输 出。2014年,Calendron 等^[45]使用 2 块 Yb: KYW 作为增益介质,获得了中心波长为1021~1033 nm、 重复频率为1kHz、单脉冲能量为4.7mJ的大能量 激光脉冲,因为更高的脉冲能量对应更大的小信号 增益和更多的往返放大次数,势必导致更强的增益 窄化效应,使得输出脉冲宽度为 650 fs。2020 年, He 等^[46]使用基于 2 块切向正交放置的 Yb: KGW 双晶体构型再生腔,获得了重复频率为1kHz、单脉 冲能量为1.2 mJ的激光脉冲,在获得 mJ 量级能量 的同时将脉冲宽度缩短至 227 fs。

2014 年, Pouysegur 等^[34]利用非线性放大方式 将光谱宽度为 10 nm 的种子光注入到基于 Yb: KYW 晶体的薄片再生放大器中,获得了重复 频率为 50 kHz、单脉冲能量为 32 μJ、脉冲宽度为 145 fs、光谱宽度为 14 nm 的高重频超短脉冲输出。 2019年,Yan 等^[47]对振荡器输出的种子脉冲进行预 啁啾处理后,经再生放大获得重复频率为 60 kHz、 单脉冲能量为 21 μJ、脉冲宽度为 270 fs 的高重频激 光脉冲输出。

2.4 基于 Yb: CaF₂ 的再生放大研究

Yb: CaF2 晶体上能级寿命为 2.4 ms, 增益谱 宽为 70 nm,优于绝大部分 Yb 激光增益介质,在高 峰值功率飞秒激光放大领域具有很大潜力。而且在 低温条件下, Yb^{3+} 、 Na^{3+} 共掺的 CaF_2 晶体的吸收 截面和发射截面可增加约3倍[48]。2009年, Pugžlys 等^[49]将光纤激光器输出的能量为 0.6 nI 的 种子源注入到低温制冷的 Yb,Nd: CaF。晶体再生 放大器中,获得了重复频率为1kHz、单脉冲能量为 3 mJ、脉冲宽度为 195 fs、峰值功率为 15 GW 的超短 脉冲激光输出。2011年, Ricaud 等^[50]将振荡器输出 的光谱宽度为15 mm、中心波长为1043 nm的种子光 展宽后注入到再生放大腔内,使用 2.6% 掺杂、5 mm 长的 Yb: CaF2 晶体作为增益介质,在重复频率为 10 kHz下获得中心波长为 1045 nm、平均功率为 0.6 W、单脉冲能量为 60 µJ、脉冲宽度为 400 fs 的激 光放大输出:在重复频率为 500 Hz 下获得中心波长 为 1040 nm、单脉冲能量为 1.4 mJ、脉冲宽度为 178 fs、峰值功率为 7.8 GW 的超短脉冲激光输出。

2014 年, Caracciolo 等^[51] 将 平 均 功 率 为 650 mW、重复频率为 63 MHz、脉冲宽度为 95 fs 的 种子激光展宽至 400 ps,再注入到基于 Yb : CaF₂ 晶体 的 再生 放大器中,压缩后获得重复频率为 5 kHz、单脉冲能量为 1 mJ、脉冲宽度为 324 fs、峰值 功率为 3 GW 的激光放大输出。2017 年,Sevillano 等^[52]采用 22 mm 长、1.7%掺杂的 Yb : CaF₂ 作为增 益介质,同时利用平均功率为 27 W、光束质量 M^2 = 1.1 的光纤激光器作为泵浦源,以保证长晶体下的 模式匹配。将脉冲宽度为 70 fs、平均功率为 1.1 W 的种子激光经选单注入到再生腔中,最终获得脉冲宽 度为 130 fs、重复频率为 5~50 kHz 的超短脉冲输出, 重复频率为 5 kHz 时单脉冲能量可达 1 mJ,重复频率 为 50 kHz 时,对应的单脉冲能量为 86 μ J。

2.5 基于 Yb: CGA 的再生放大研究

Yb: CALGO(Yb: CGA)能够同时兼顾优秀 热导性质(6.9 W·m⁻¹·K⁻¹)和宽的增益谱 (~80 nm),被广泛应用于高功率短脉宽飞秒激光 放大器。2013年,Caracciolo等^[53]将振荡器输出的 单脉冲能量为10 nJ、脉冲宽度为92 fs 的种子脉冲 展宽后,注入到基于 Yb: CGA 晶体的再生放大器

综 述

中,获得了平均功率为 36 W 的激光放大,最后经透 射光栅压缩后实现平均功率为 28W、重复频率为 500 kHz、单脉冲能量为 56 μJ、脉冲宽度为 217 fs、 峰值功率为 258 MW 的高重频超短脉冲激光输出。 2017年,Caracciolo等^[54]又将振荡器输出的平均功 率为 750 mW、单脉冲能量为 4.4 nJ、脉冲宽度为 80 fs 的种子激光展宽后注入到基于 Yb : CGA 的 再生放大腔中,通过增益谱峰值与种子光谱的匹配, 令脉冲宽度进一步降低,最终获得平均功率为 34 W、重复频率为 500 kHz、脉冲宽度为 140 fs 的 超短脉冲激光输出。

2013年, Pouysegur 等^[55]使用非线性放大方 式,将振荡器输出的脉冲宽度为 165 fs、谱宽为 15 nm 的脉冲展宽至 20 ps,再注入到基于 Yb:CGA 晶体的再生放大器中,实现了重复频率 为 50 kHz、单脉冲能量为 24 μ J、脉冲宽度为 97 fs 的超短脉冲激光输出,对应光谱宽度和峰值功率分 别为 19 nm 和 218 MW,首次将 Yb 再生放大的脉 冲宽度缩短至亚 100 fs,实验装置及放大过程中脉 冲演变规律如图 3 所示。

图 3 非线性放大器^[55]。(a)实验装置图;(b)放大过程中脉冲演变规律

Fig. 3 Diagram of nonlinear amplifier^[55]. (a) Experimental equipment; (b) evolution rule of pulse during amplification process

Yb:CGA 晶体在高峰值功率方面也表现出明显的优势。2013年,Calendron^[56]将振荡器输出的重复频率为42.5 MHz、脉冲宽度为210 fs、单脉冲能量为16 nJ 的种子光展宽后,并搭配2 根增益光纤保证展宽后的脉冲能量保持在1 nJ,随后注入到将2 块Yb:CGA 作为增益介质的再生放大器中,双晶体设置的再生腔不仅可以分配泵浦光带来的热负荷,同时大大增强了再生腔的热不敏感性,经放大后获得中心波长为1040 nm、重复频率为1 kHz、单脉冲能量为4 mJ、脉冲宽度为500 fs、峰值功率为8 GW 的高峰值功率激光输出,图4 为双晶体再生腔实验装置。

Fig. 4 Experimental diagram of double crystal regeneration cavity^[56]

2.6 基于其他 Yb 掺杂晶体的再生放大研究

除了上述几种常用晶体,还有许多 Yb 激光增益 介质具有优秀的热光性质,在飞秒振荡器中具有不错 的表现。如 Yb: YVO, 晶体拥有 10×10^{-20} cm² 的 增益截面;Yb:CYA 晶体、Yb:SSO(Yb:Sc₂SiO₅) 晶体拥有大于 50 nm 的带宽;Yb: LuAlO3 晶体具 有 ~ 10 W•m⁻¹•K⁻¹的热导率;Yb:Lu₂O₂ 晶体 拥有比 Yb: YAG 更宽的增益带宽,且热导率随掺 杂浓度的变化基本不变(未掺杂时为 12.6 W • m⁻¹ • K⁻¹,9% 掺杂时为 12 W • m⁻¹ • K⁻¹) 等,因此科研人员对这些晶体的飞秒激光放大性能 也进行了研究。2015年, Rudenkov 等使用 $Yb: YVO_4$ 再生放大器,实现了重复频率为 200 kHz、单脉冲能量为 21 µJ、脉冲宽度为 200 fs 的飞秒激光放大[57]; 2016 年又报道了基于 Yb: CYA 晶体的再生放大装置,获得重复频率为 200 kHz、平均功率为 4.2 W、脉冲宽度为 310 fs 的 σ 偏振光及重复频率为 200 kHz、平均功率为 2.3 W、脉冲宽度为 190 fs 的 π 偏振光输出^[58];并 在 2018 年实现了重复频率为 200 kHz、平均功率为 3 W、脉冲宽度仅为120 fs 的超短激光脉冲输出^{59」}; 2017 年他们使用基于倍半氧化物 Yb: LuAlO₃ 的

再生放大器,在晶体为 c 切时,获得平均功率为 4.5 W、重复频率为 200 kHz、单脉冲能量为 45 µJ、 脉冲宽度为 165 fs 的 超短脉冲激光输出^[60]: 2019年,报道了基于 Yb: YAB 的再生放大器,实 现平均功率为 4.6 W、重复频率为 100 kHz、单脉冲 能量为 46 μJ、脉冲宽度为 695 fs 的飞秒激光放 大^[61]。2015年, Pirzio 等^[62]使用基于 Yb: SSO 晶 体的再生放大系统,获得重复频率为 500 kHz、单脉 冲能量为 3.4 µJ、脉冲宽度为 296 fs 的超短脉冲激 光输出。2016 年, Caracciolo 等^[63] 使用基于 Yb:Lu₂O₂晶体的再生放大器获得了重复频率为 500 kHz、平均功率为 42 W 的高平均功率输出,压 缩后脉冲宽度为 780 fs。2018 年, Huynh 等^[64]使用 基于 Yb: YGAG(Y₃Ga₂Al₃O₁₂)的新型陶瓷获得 了重复频率为100 kHz、单脉冲能量为8 µJ、脉冲宽 度为 405 fs 的高重频飞秒激光输出。

综合以上再生放大器的研究进展可以看出,虽然

第 48 卷 第 5 期/2021 年 3 月/中国激光

Yb 掺杂激光材料的整体增益截面较低,但是凭借较 多的放大次数也可以实现可观的放大结果,将单脉冲 能量为 nJ 量级的飞秒脉冲放大至 μJ 甚至 mJ 量级, 脉冲能量呈指数型增长,以此可作为飞秒激光功率放 大的预放大级。为了提高能量提取效率,获得更高的 脉冲能量,通常采用行波放大的方式,此时脉冲能量呈 线性增长,可在有限的放大次数中使输出能量得到进 一步的提升。另一方面,对于更高重复频率(>2 MHz) 的飞秒激光放大,一般也采用行波放大方式。

3 高重频行波放大研究

3.1 行波放大技术简介

与再生放大器不同的是,行波放大器没有谐振腔,根据种子激光经增益介质的次数,可以分为单通、两通、四通甚至八通放大器,其中典型的四通放大光路如图5所示,通过改变激光的偏振状态以控制往返次数,从而实现种子激光的有效放大。

图 5 四通行波放大器原理图 Fig. 5 Schematic of four-pass travelling-wave amplifier

相比钛宝石晶体而言,基于掺 Yb 的新型激光 晶体拥有更长的上能级粒子寿命和更大的饱和能流 密度,使得 Yb 晶体的储能效率及可达到的能量上 限都进一步提升。在高重复频率行波放大器中,增 益介质的自激振荡^[65]、自发辐射跃迁^[66]等效应,量 子亏损、无辐射跃迁等导致的热积累问题^[16],过高 温度导致的光学元件损伤限制了放大器的效率和输 出脉冲质量^[67]。其中,高平均功率固体激光器实质 上是把低亮度泵浦光束转换成高亮度的激光输出, 并由于热力学第二定律的约束伴随着总功率降低及 废热的产生,激光增益材料上的热负载决定了材料 的热应力极限,从而限制了增益介质的储能,是阻碍 激光器输出功率提升的主要因素。因此对于主放大 的技术路线,主要以减小输出激光的热光畸变和提 高输出激光亮度为目标。

3.2 基于板条、薄片的行波放大研究

基于薄片、板条等晶体特殊的热管理方式,并结

合 CPA 及行波放大的技术是获得高重频高功率激 光脉冲的重要手段。板条的激光放大原理如图 6 所 示,板条激光器沿激光传播的垂直方向将晶体压缩 至毫米数量级,晶体上下表面散热,泵浦光从板条左 右两端对增益介质进行抽运,晶体仅在上下表面存 在热梯度,通过一定角度将种子光入射至板条内部 并沿"之"字形光路传输,使光束在垂直方向上的热 效应经不同区域时进行叠加而相互补偿,传输路径 中热透镜和热光畸变的影响将大大减小,可大幅度 提高激光输出功率和光束质量^[68]。2013年, Negel 等^[69]使用 Yb: YAG 薄片放大器,获得了重复频率 为800 kHz、平均功率为1.105 kW、单脉冲能量为 1.38 mJ、脉冲宽度为 7.3 ps 的超短脉冲输出。 2010 年 Russbueldt 等^[70] 在室温下使用级联 Yb: YAG 板条放大技术,获得重复频率为 20 MHz、平均功率为1.1 kW、脉冲宽度为615 fs 的 飞秒激光输出,为得到高功率放大,采用了7+1程

的放大结构,放大器结构相对比较复杂。2011年 Schulz等^[71]使用 Yb:YAG 板条放大器,获得重复 频率为 100 kHz、平均功率为 200 W、脉冲宽度为 830 fs 的飞秒激光输出。然而,受限于薄片较低的 单通增益和复杂的多通结构,技术复杂性也大大提 高,相较于薄片激光器,板条激光器在整体结构上颇 具优势,但是板条激光器多为侧面泵浦或角泵浦,使 得板条在宽度和厚度两方向都存在热梯度,高功率 下光束质量会迅速恶化,导致其输出光束质量较难 控制^[71]。

图 6 双端泵浦板条激光技术原理图 Fig 6 Schematic of double-ended pumped slab laser technology

而基于单晶光纤(SCF)和传统块状(棒状)材料 的行波放大器因结构简单、模块成熟、不需要额外复 杂的整形系统等优势有着良好的发展前景^[72]。目 前,基于 Yb 掺杂的行波放大器主要以 Yb : YAG 晶体为主,科研工作者们已经实现了百 kHz 重复频 率、mJ 量级能量的高重频超短脉冲激光输出。

3.3 基于单晶光纤的行波放大研究

光纤放大是实现高平均功率高重复频率脉冲激 光的另一种方式,随着半导体激光泵浦技术和光纤 制造工艺的发展,光纤激光器因良好的热管理能力 在高功率方面表现出十足的潜力^[73-75]。但以玻璃光 纤作为增益介质的高功率光纤激光器模式不稳定 性^[76-77],受激拉曼散射(SRS)和受激布里渊散射 (SBS)等非线性效应在一定程度上对其功率的提升 提出挑战^[78-79]。SCF原理如图7所示,结合了体块 晶体和玻璃光纤的优点,大长径比的外形结构能有 效抑制放大中热效应的产生,还同时兼具了块状晶 体优秀的理化性质,成为近年来获得高功率高重频 超快激光输出的全新选择。Délen 等^[80]使用了直径

为1 mm、1%掺杂的 Yb: YAG SCF 作为增益介质,在515 W 的泵浦功率下,实现了251 W 的最大连续激光功率输出,对应的斜效率为53%,这是目前为止采用 SCF 获得的最高连续光功率,较高的能量提取率也充分证明其在高重频放大器中的潜力。

2011年,Zaouter等^[81]首次将Yb:YAG单晶 光纤用于超短脉冲放大,实验采用直径为1 mm、长 度为 40 mm 的 Yb: YAG 单晶光纤作为增益介质, 对重频为 30 MHz、脉冲宽度为 270 fs 的种子光直 接进行放大,后经平均功率为175W、中心波长为 940 nm 的泵浦光泵浦,经 GTI 镜压缩后得到平均 功率为 12 W、重复频率为 30 MHz、脉冲宽度为 330 fs 的高重频激光脉冲输出。然而因入射激光能 量、二极管的亮度、泵浦光引导阶段的模式匹配欠缺 等问题,实验中光光转换效率仅为7%,光束质量也 较差。2013年 Délen 等^[82]引入数值孔径为 0.15、 芯径为105 µm 的光纤耦合激光二极管作为泵浦 源,优化了泵浦引导阶段的模式匹配,同时采用 CPA 技术,对重频为 10 kHz~10 MHz、最大脉冲 能量为 150 µJ、最大平均功率为 10 W 的种子光进 行放大。高亮度的二极管大大提升了泵浦光的吸收 效率,最终在重复频率为10kHz时获得的单脉冲 能量可达1mJ,同时脉冲宽度仅为380fs,实验中光 光转换效率提高至 28.5%,斜效率可接近 50%。且 随着泵浦功率的增加,输出功率并没有达到饱和,但 是过高的泵浦功率容易对单晶光纤端面造成损伤, 伴随的晶体内的热梯度也会进一步影响放大效率。 2015年, Markovic 等^[83]引人双端泵浦,采用

多级放大方式降低热积累,采用全重频放大的方式 直接对平均功率为 2.8 W、重复频率为 83.4 MHz 的种子光脉冲进行放大,在两级共 300 W 泵浦功 率下,获得平均功率为160 W、脉冲宽度为800 fs、 重复频率为83.4 MHz的高重频激光脉冲输出。 此外,2020年,Li等^[84]采用光纤-单晶光纤混合放 大的方式也获得了高重频、高功率激光输出,将前 端光纤放大器输出的重复频率为1 MHz、平均功 率为 92 W 的种子光注入到掺杂浓度为 1%、直径 为1mm、长度为30mm的Yb:YAG单晶光纤放 大器中,实现112 W 的平均功率输出,因为在高功 率泵浦下单晶光纤热退偏的影响,压缩效率仅为 73.8%,压缩后获得脉冲宽度为660 fs、平均功率 为 90 W 的高功率激光输出。除此之外,科研工作 者对相干合成和分割脉冲放大等新型单晶光纤激 光放大器的探索也从未停止,均获得了可观的研 究成果^[85-87]。

基于单晶光纤的行波放大器是高重频大能量飞 秒激光放大的一种突破,以 YAG 单晶为光纤的增 益介质,综合受激布里渊散热和热效应的影响, YAG单晶光纤的输出极限为玻璃光纤的~50倍, 理论可达近 10 kW 的功率输出^[88]。但高质量单晶 光纤的制备仍然是目前发展的难题,晶体生长等方 面与国际最高水平仍有不小的差距,随着研究的不 断深入及单晶光纤生长工艺愈发的成熟,相信在不 久的将来,基于单晶光纤的放大系统会服务于各个 工业及科研领域。

3.4 基于棒、块状晶体的行波放大研究

受限于单晶光纤的制备工艺,研究人员将目光 聚焦至结构简单、模块成熟的传统棒状(块状)放大 器。2017年,Rodin等^[89]使用尺寸为2mm×2mm× 20mm的Yb:YAG晶体获得重复频率为10kHz、 单脉冲能量达3.5mJ的行波放大输出。并对尺寸 为1mm×40mm、掺杂浓度为1%的Yb:YAG单 晶光纤与尺寸为5mm×5mm×5mm、5%掺杂, 5mm×5mm×20mm、2%掺杂,2mm×2mm× 20mm、2%掺杂的Yb:YAG块状晶体进行对比实 验,在相同的装置下获得的结果如表2m示。

表 2 Yb: YAG SCF 和 Yb: YAG 块状晶体在 940 nm 和 969 nm 泵浦下的 CPA 性能^[89] Table 2 CPA of Yb: YAG SCF and Yb: YAG rods pumped at 940 nm and 969 nm^[89]

Pump power /W	Seed repetition /kHz	Output power /W	Small signal gain /dB	M_x^2	M_y^2
Yb :	YAG SCF with size of 1 1	${\tt mm} imes 40$ mm and dopin	g concentration of 1% und	er 940 nm pur	np
70	100	8.5	17	1.06	1.07
105(70+35)	100	21	26	1.09	1.09
120(70+50)	500	26	28	1.13	1.10
Yb : YA	G rod with size of 5 mm?	$ imes 5~{ m mm} imes 5~{ m mm}$ and do	ping concentration of 5 ½ u	inder 940 nm	pump
70	100/500	7.2/7.8	17	1.10	1.17
Yb : YA	G rod with size of 5 mm>	$\times 5 \text{ mm} imes 20 \text{ mm}$ and do	pping concentration of $2\frac{9}{2}$	under 940 nm	pump
70	500	11.2	24	1.17	1.08
Yb : YA	G rod with size of 2 mm>	<2 mm $\times20 mm and do$	pping concentration of $2\frac{9}{2}$	under 940 nm	pump
70	500	13.5	25	1.06	1.08
120(70+35)	500	39.5	40	1.07	1.09
140(70+50)	500	47.5	42.3	1.13	1.17
Yb : YA	G rod with size of 2 mm>	$\times 2 \text{ mm} \times 20 \text{ mm}$ and do	pping concentration of $2\frac{9}{2}$	under 969 nm	pump
87	500	17.9	24.4	1.06	1.06

从表 2 可以看出,尽管单晶光纤特殊的结构可 以引导泵浦光在更长的距离内激发反转粒子数,但 相比于传统块状材料,似乎在低功率水平的输出参 数上 并 没 有 表 现 出 明 显 的 优 势。2018 年, Kuznetsov 等^[90]将光纤激光器输出的重复频率为 3 MHz、脉冲宽度为 300 fs、平均功率为 3 W 的种子 光经选单至 11.5 kHz,利用 CVBG 作为展宽器,将 脉冲宽度展宽至 2 ns,在泵浦功率 50 W 的情况下, 经两通将种子光功率放大至 2.8 W。后续将其注入 到基于一块 30 mm 长、2%掺杂的 Yb: YAG 晶体 的二级两通放大器中,经 CVBG 压缩后最终获得平 均功率为 28 W、重复频率为 11.5 kHz、单脉冲能量

第 48 卷 第 5 期/2021 年 3 月/中国激光

为 2.5 mJ 的脉冲激光输出。由于 Yb: YAG 本身 带宽的限制及使用的 CVBG 质量较差,脉冲宽度为 2.8 ps。

2018年,Veselis等^[91]以重复频率为200 kHz、 单脉冲能量为2.3 μJ的光纤前端放大器作为种子 光源,使用啁啾光纤光栅(CFBG)将脉冲展宽至 220 ps,随后注入到晶体长度为12 mm、掺杂浓度为 3.6%的Yb:YAG晶体棒两通放大器中,放大后的 光束质量因热透镜像差而恶化,于是在聚焦透镜的 近焦平面放置一陶瓷孔进行空间滤波,大约有3% 的功率损失。同时为了得到更好的色散补偿并减小 放大器的体积,使用了与CFBG 提供的色散量相匹 配的CVBG 作为压缩器,并在CFBG 施加热梯度来 补偿光纤放大及后续放大过程中的残余色散,最终 实现了平均功率为20.8 W、重复频率为200 kHz、 单脉冲能量为 104 μ J 的激光输出,并将脉冲宽度降 至 762 fs。然而,利用 CFBG 中热梯度的变化补偿 CVBG、光纤预放大及主放大过程中的残余色散及 高阶色散显得有些不足。2020年,他们^[92]采用四 通透射光栅作为压缩器,进一步补偿 CFBG、光纤 预放大及主放大过程中引入的色散量,采用相同 的实验设计,获得了重复频率为 1 MHz、单脉冲能 量为 35 μ J、脉冲宽度为 330 fs、光束质量 M^2 约为 1.0 的超短脉冲输出,图 8 为双通行波放大实验装 置。除 Yb: YAG 晶体外,2019年,Kim 等^[93]利 用尺寸为 1 mm×27 mm、0.5%掺杂的 Yb: Y₂O₃ 陶瓷棒,在最大 123.7 W 的泵浦功率下,对振荡器 输出的种子光进行四通放大,得到重复频率为 80 MHz、平均功率为 8.1 W、脉冲宽度为 239 fs 的 超短脉冲输出。

图 8 双通行波放大实验装置图^[92]

Fig. 8 Experimental setup of double-pass travelling-wave amplification^[92]

但是在高功率水平下,棒状、块状晶体热效应将 变得尤为突出,过高的温度不仅会损坏增益晶体和 光学元件,而且热透镜和热致双折射等热积累问题 也会导致光束波前畸变,从而进一步影响压缩效率 和输出结果。因此,要想利用块状晶体获得高功率 激光输出,需要结合低温冷却技术来降低晶体的热 积累^[94-96]。2011年,Rand等^[97]将Yb:KYW振荡 器输出的重复频率为30.5 MHz、脉冲宽度为450 fs 的种子光再生放大选单至5 kHz,并通过基于2块 2.5 cm长、1%掺杂、低温冷却的Yb:YAG 晶体的 四通放大器,为补偿热致双折射,加强泵浦光与种子 光的匹配,在放大过程中引入4f 望远系统,最终获 得重复频率为5 kHz、平均功率为115 W 的激光放 大输出。其中再生预放大的输出光谱中心波长为 1029.8 nm,比低温冷却的 Yb:YAG 晶体增益谱 中心略长,但两者有足够的重叠,使种子光可提取晶 体增益,放大后的光谱经计算仅支持 2~3 ps 的脉 冲宽度。为了获得更短的脉冲宽度,他们将 1 块 1.5 cm 长、2%掺杂的 Yb:GSAG 晶体代替其中 1 块 Yb:YAG 晶体,因为其性质与 Yb:YAG 类似, 都是氧化石榴石,低温下的增益谱重叠,但有所偏 移,能有效地降低增益窄化效应^[98],当入射脉冲宽 度为 1.6 ps 时,最终获得重复频率为 5 kHz、平均功 率为 60 W、脉冲宽度为 1.4 ps 的激光放大输出。 2016 年,Zapata 等^[99]利用低温制冷技术,将 2 块尺 寸为 5 mm×15 mm×23 mm、1%掺杂的 Yb:YAG 晶体经液氮冷却至 77 K,将再生放大器输出的重复 频率为 100 kHz、单脉冲能量为 40 μJ 的种子光经四 通放大至 2.5 mJ,对应平均功率为 250 W,脉冲宽 度为 20 ps,光光转换效率高达 50%,图 9 为四通偏 振控 制 放 大 器 装 置 图。因 为 在 低 温 冷 却 下, Yb:YAG 晶体增益谱进一步变窄,仅为 1.6 nm, 导致基于低温冷却 Yb:YAG 晶体的功率放大器脉 冲宽度难以突破 ps 量级。另外一种晶体 Yb:YLF 在低温冷却下增益光谱达 10 nm(a 切),支持 400 fs 以下的激光脉冲输出^[100],其在重复频率 10 Hz 下 已获得单脉冲能量为 190 mJ、脉冲宽度为 1.35 ps 的 激 光 输 出^[101]。因 种 子 光 光 谱 无 法 匹 配 Yb:YLF 增益谱,输出脉冲宽度仍为皮秒量级,但 Yb:YLF 的出现,科研人员有望从低温制冷的全 固态行波放大器中得到飞秒量级的脉冲宽度。

4 总结与展望

LD 泵浦全固态飞秒激光放大器是全固态领域的研究热点,得益于高效的半导体泵浦技术的发展^[102]及各类新型 Yb 掺杂激光介质的出现,科研工作者们在高功率飞秒激光工作中取得了优秀的研究结果。在百瓦甚至千瓦级飞秒激光放大系统中,目前薄片、板条、单晶光纤结构为主流方案,增益介质主要为 Yb : YAG 晶体,已获得平均功率为 250 W的激光放大输出,受限于增益带宽,输出脉冲宽度为20 ps,很难压缩至飞秒量级,更短的脉冲宽度和更高的光束质量需要复杂的非线性压缩装置和整形系统实现。而除热导性质优良、生长技术成熟的 Yb : YAG 晶体外,关于基于其他材料的高功率高重频 究其原因,一方面受限于掺镱激光材料目前的生长 技术,新型激光晶体的研究还处于探索阶段:另一方 面受限于泵浦阈值较高、单程增益较小,高功率飞秒 激光的获取需通过增加放大次数和提高泵浦功率密 度等方式来实现,然而晶体的散热和放大效率仍然 是亟需解决的难点。目前,基于 Yb: CaF₂ 的离轴 多通主功率放大结合低温冷却技术在 50 Hz 重频下 已经实现单脉冲能量为 110 mJ、脉冲宽度为 225 fs 的成果^[104], 突破了 Yb: YAG 晶体在低温 下增益带宽较窄的限制。此外,在 90 K 低温下, Yb : Lu_2O_3 (32. 3 W • m⁻¹ • K⁻¹), Yb : Sc_2O_3 $(19.8 \text{ W} \cdot \text{m}^{-1} \cdot \text{K}^{-1})$, Yb : YLF $(33.7 \text{ W} \cdot \text{m}^{-1} \cdot \text{K}^{-1})$ 等晶体都拥有优秀的热导性质[97]。随着这些新型 激光晶体生长水平的发展,基于掺镱激光介质的超 短脉冲激光放大器在放大效率和输出功率方面定能 达到新的高度。结合目前全固态超快激光的发展趋 势和本课题组的研究基础,计划使用亚 40 fs 全固 态飞秒激光振荡器作为种子光源,获得重复频率为 1 MHz、单脉冲能量>20 µJ、脉冲宽度<100 fs、峰 值功率>100 MW、平均功率>20 W 的全固态超快 激光再生放大系统。并以此作为预放大级,通过结 合低温制冷方式,研究基于 Yb : Lu₂O₃、 Yb: Sc₂O₃、Yb: CGA、Yb: KGW 等新型激光晶 体的行波主放大技术,进而实现平均功率>100 W 的输出,获得脉冲宽度<500 fs的研究结果。

参考文献

- Strickland D, Mourou G. Compression of amplified chirped optical pulses [J]. Optics Communications, 1985, 56(3): 219-221.
- [2] Goulielmakis E, Schultze M, Hofstetter M, et al. Single-cycle nonlinear optics [J]. Science, 2008, 320 (5883): 1614-1617.
- [3] Zhao K, Zhang Q, Chini M, et al. Tailoring a 67 attosecond pulse through advantageous phasemismatch[J]. Optics Letters, 2012, 37(18): 3891-3893.
- [4] Zhou S Y, Bai Y F, Tian Y, et al. Self-organized kilotesla magnetic-tube array in an expanding spherical plasma irradiated by kHz femtosecond laser pulses[J]. Physical Review Letters, 2018, 121(25): 255002.
- [5] Cingöz A, Yost D C, Allison T K, et al. Direct frequency comb spectroscopy in the extreme ultraviolet[J]. Nature, 2012, 482(7383): 68-71.
- [6] Koralek J D, Douglas J F, Plumb N C, et al. Laser based angle-resolved photoemission, the sudden

approximation, and quasiparticle-like spectral peaks in ${\rm Bi}_2 {\rm Sr}_2 {\rm CaCu}_2 {\rm O}_{8+\delta}$ [J]. Physical Review Letters, 2006, 96(1): 017005.

- Stockman M I, Kling M F, Kleineberg U, et al. Attosecond nanoplasmonic-field microscope [J]. Nature Photonics, 2007, 1(9): 539-544.
- [8] Lorek E, Larsen E W, Heyl C M, et al. High-order harmonic generation using a high-repetition-rate turnkey laser [J]. The Review of Scientific Instruments, 2014, 85(12): 123106.
- [9] Russbueldt P, Mans T, Weitenberg J, et al. Compact diode-pumped 1.1 kW Yb : YAG Innoslab femtosecond amplifier[J]. Optics Letters, 2010, 35 (24): 4169-4171.
- [10] Nubbemeyer T, Kaumanns M, Ueffing M, et al.
 1 kW, 200 mJ picosecond thin-disk laser system[J].
 Optics Letters, 2017, 42(7): 1381-1384.
- [11] Eidam T, Hanf S, Seise E, et al. Femtosecond fiber CPA system emitting 830 W average output power
 [J]. Optics Letters, 2010, 35(2): 94-96.
- Gao Z Y, Zhu J F, Wang J L, et al. Generation of 33 fs pulses directly from a Kerr-lens mode-locked Yb: CaYAlO₄ laser[J]. Photonics Research, 2015, 3(6): 335-338.
- [13] Machinet G, Sevillano P, Guichard F, et al. Highbrightness fiber laser-pumped 68 fs-2.3 W Kerr-lens mode-locked Yb : CaF₂ oscillator[J]. Optics Letters, 2013, 38(20): 4008-4010.
- Südmeyer T, Kränkel C, Baer C R E, et al. High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation
 [J]. Applied Physics B, 2009, 97(2): 281-295.
- [15] Dörring J, Killi A, Morgner U, et al. Period doubling and deterministic chaos in continuously pumped regenerative amplifiers [J]. Optics Express, 2004, 12(8): 1759-1768.
- [16] Salin F, Blanc C, Squier J, et al. Thermal eigenmode amplifiers for diffraction-limited amplification of ultrashort pulses [J]. Optics Letters, 1998, 23(9): 718-720.
- [17] Frede M, Wilheim R, Brendel M, et al. High power fundamental mode Nd : YAG laser with efficient birefringence compensation [J]. Optics Express, 2004, 12(15): 3581-3589.
- [18] Matsubara S, Tanaka M, Takama M, et al. A picosecond thin-rod Yb : YAG regenerative laser amplifier with the high average power of 20 W[J]. Laser Physics Letters, 2013, 10(5): 055810.
- [19] Lü Q, Kugler N, Weber H, et al. A novel approach for compensation of birefringence in cylindrical Nd : YAG rods [J]. Optical and Quantum Electronics,

1996, 28(1): 57-69.

- [20] Sichelstiel B, Waters W, Wild T. Self-focusing array research model[J]. IEEE Transactions on Antennas and Propagation, 1964, 12(2): 150-154.
- [21] Zhao K. Laser, chirped pulse amplification, ultrafast optics, and Nobel prize in physics [J]. Chinese Science Bulletin, 2019,64(14): 1433-1440.
 赵昆. 激光、啁啾脉冲放大、超快光学和诺贝尔奖[J]. 科学通报, 2019,64(14): 1433-1440.
- [22] Rouyer C, Mazataud É, Allais I, et al. Generation of 50-TW femtosecond pulses in a Ti: sapphire/Nd chain[J]. Optics Letters, 1993, 18(3): 214-216.
- [23] Fan T Y, Ripin D J, Aggarwal R L, et al. Cryogenic Yb³⁺-doped solid-state lasers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13 (3): 448-459.
- [24] Kuleshov N V, Lagatsky A A, Podlipensky A V, et al. Pulsed laser operation of Yb-doped KY(WO₄)₂ and KGd(WO₄)₂[J]. Optics Letters, 1997, 22(17): 1317-1319.
- [25] Chénais S, Druon F, Forget S, et al. On thermal effects in solid-state lasers: the case of ytterbiumdoped materials [J]. Progress in Quantum Electronics, 2006, 30(4): 89-153.
- [26] Siebold M, Bock S, Schramm U, et al. Yb : CaF₂ a new old laser crystal[J]. Applied Physics B, 2009, 97(2): 327-338.
- [27] Xing H Y. Research progress of Yb: CaGdAlO₄ crystal[J]. Foundry Technology, 2017, 38: 280-284.
 邢恒远. Yb: CaGdAlO₄ 晶体的研究进展[J]. 铸造 技术, 2017, 38: 280-284.
- [28] Hönninger C, Johannsen I, Moser M, et al. Diodepumped thin-disk Yb : YAG regenerative amplifier [J]. Applied Physics B, 1997, 65(3): 423-426.
- [29] Havrilla D, Ryba T, Holzer M. High-power disk lasers: advances and applications[J]. Proceedings of SPIE, 2012, 8235: 82350W.
- [30] Metzger T, Schwarz A, Teisset C Y, et al. Highrepetition-rate picosecond pump laser based on a Yb: YAG disk amplifier for optical parametric amplification [J]. Optics Letters, 2009, 34 (14): 2123-2125.
- Grishin M, Gulbinas V, Michailovas A. Dynamics of high repetition rate regenerative amplifiers [J].
 Optics Express, 2007, 15(15): 9434-9443.
- [32] Smrž M, Chyla M, Novák O, et al. Amplification of picosecond pulses to 100 W by an Yb : YAG thindisk with CVBG compressor [J]. Proceedings of SPIE, 2015, 9513: 951304.
- [33] Krötz P, Wandt C, Grebing C, et al. Towards

2 kW, 20 kHz ultrafast thin-disk based regenerative amplifiers[C] // Advanced Solid State Lasers 2019, September 29-October 3, 2019, Vienna, Austria. Washington, DC: OSA, 2019: ATh1A.8.

- [34] Pouysegur J, Delaigue M, Hönninger C, et al. Generation of 150-fs pulses from a diode-pumped Yb: KYW nonlinear regenerative amplifier [J]. Optics Express, 2014, 22(8): 9414-9419.
- [35] Pouysegur J, Delaigue M, Hönninger C, et al. Numerical and experimental analysis of nonlinear regenerative amplifiers overcoming the gain bandwidth limitation [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(1): 212-219.
- [36] Ueffing M, Lange R, Pleyer T, et al. Direct regenerative amplification of femtosecond pulses to the multimillijoule level[J]. Optics Letters, 2016, 41 (16): 3840-3843.
- [37] Liu H H, Nees J, Mourou G. Directly diode-pumped Yb: KY(WO₄)₂ regenerative amplifiers[J]. Optics Letters, 2002, 27(9): 722-724.
- [38] Liu H, Nees J, Mourou G, et al. Yb : KGd(WO₄)₂ chirped-pulse regenerative amplifiers [J]. Optics Communications, 2002, 203(3/4/5/6): 315-321.
- [39] Delaigue M, Manek-Hönninger I, Salin F, et al. 300 kHz femtosecond Yb : KGW regenerative amplifier using an acousto-optic Q-switch [J]. Applied Physics B, 2006, 84(3): 375-378.
- [40] Leng Y X, Lin L H, Xu Z Z. Spectrum shaping in a Ti: sapphire regenrative amplifier [J]. Acta Optica Sinica, 2002, 22(2): 170-173.
 冷雨欣,林礼煌,徐至展. 掺钛蓝宝石再生放大器的 光谱整形[J]. 光学学报, 2002, 22(2): 170-173.
- [41] Zhao H T, Major A. Dynamic characterization of intracavity losses in broadband quasi-three-level lasers
 [J]. Optics Express, 2014, 22(22): 26651-26658.
- [42] Stučinskas D, Antipenkov R, Varanavičius A. 30 W dual active element Yb : KGW regenerative amplifier for amplification of sub-500 fs pulses[J]. Proceedings of SPIE, 2007, 6731: 67312Y.
- [43] Kim G H, Yang J, Kulik A V, et al. Power limitations and pulse distortions in an Yb : KGW chirped-pulse amplification laser system [J]. Quantum Electronics, 2013, 43(8): 725-730.
- [44] Kim G H, Yang J H, Lee D S, et al. Femtosecond laser based on Yb : KYW crystals with suppression of spectral narrowing in a regenerative amplifier by spectral profiling of the pulse[J]. Journal of Optical Technology, 2013, 80(3): 142-147.
- [45] Calendron A L, Çankaya H, Kärtner F X. Highenergy kHz Yb : KYW dual-crystal regenerative

amplifier[J]. Optics Express, 2014, 22(20): 24752-24762.

- [46] He H J, Yu J, Zhu W T, et al. A Yb : KGW dualcrystal regenerative amplifier[J]. High Power Laser Science and Engineering, 2020, 8: e35.
- [47] Yan D Y, Liu B W, Chu Y X, et al. Hybrid femtosecond laser system based on a Yb : KGW regenerative amplifier for NP polarization [J]. Chinese Optics Letters, 2019, 17(4): 041404.
- [48] Pugžlys A, Sidorov D, Ali T, et al. Spectroscopic and lasing properties of cryogenically cooled Yb, Na: CaF₂ [C] // Advanced Solid-State Photonics, January 27-30, 2008, Nara, Japan. Washington, DC: OSA, 2008: MF4.
- [49] Pugžlys A, Andriukaitis G, Baltuška A, et al. MultimJ, 200-fs, cw-pumped, cryogenically cooled, Yb, Na : CaF₂ amplifier [J]. Optics Letters, 2009, 34 (13): 2075-2077.
- [50] Ricaud S, Druon F, Papadopoulos D N, et al. Diodepumped Yb : CaF₂ regenerative amplifier [J].
 Proceedings of SPIE, 2011, 7912: 79120S.
- [51] Caracciolo E, Kemnitzer M, Guandalini A, et al. Multi-kHz, high energy, femtosecond diode-pumped Yb: CaF₂ regenerative amplifier[C]//CLEO: Science and Innovations 2014, June 8-13, 2014, San Jose, California. Washington, DC: OSA, 2014: STh4E.
 2.
- [52] Sevillano P, Camy P, Doualan J L, et al. Fiber laser pumped Yb : CaF₂ regenerative amplifier delivering 130 fs pulses with 4.3 W output power [C] //2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), June 25-29, 2017, Munich, Germany. New York: IEEE Press, 2017.
- [53] Caracciolo E, Kemnitzer M, Guandalini A, et al. 28-W, 217 fs solid-state Yb : CAlGdO₄ regenerative amplifiers[J]. Optics Letters, 2013, 38(20): 4131-4133.
- [54] Caracciolo E, Guandalini A, Pirzio F, et al. High power Yb : CALGO ultrafast regenerative amplifier for industrial application [J]. Proceedings of SPIE, 2017, 1008: 100821F.
- [55] Pouysegur J, Delaigue M, Zaouter Y, et al. Sub-100fs Yb : CALGO nonlinear regenerative amplifier[J]. Optics Letters, 2013, 38(23): 5180-5183.
- [56] Calendron A L. Dual-crystal Yb : CALGO high power laser and regenerative amplifier [J]. Optics Express, 2013, 21(22): 26174-26181.
- [57] Rudenkov A S, Kisel V, Matrosov V, et al.
 200 kHz 5.5 W Yb³⁺ : YVO₄-based chirped-pulse regenerative amplifier [J]. Optics Letters, 2015, 40

(14): 3352-3355.

- [58] Rudenkov A S, Kisel V, Yasukevich A S, et al. Yb³⁺ : CaYAlO₄-based chirped pulse regenerative amplifier[J]. Optics Letters, 2016, 41(10): 2249-2252.
- [59] Rudenkov A S, Kisel V E, Yasukevich A S, et al. Yb : CALYO-based femtosecond chirped pulse regenerative amplifier for temporally resolved pumpprobe spectroscopy [J]. Devices and Methods of Measurements, 2018, 9(3): 205-214.
- [60] Rudenkov A S, Kisel V E, Yasukevich A, et al. Yb³⁺ : LuAlO₃ crystal as a gain medium for efficient broadband chirped pulse regenerative amplification
 [J]. Optics Letters, 2017, 42(13): 2415-2418.
- [61] Rudenkov A S, Kisel V E, Gorbachenya K N, et al. Growth, spectroscopy and high power laser operation of Yb : YAl₃ (BO₃)₄ crystal: continuous-wave, mode-locking and chirped pulse regenerative amplification[J]. Optical Materials, 2019, 89: 261-267.
- [62] Pirzio F, Caracciolo E, Kemnitzer M, et al. Performance of Yb : Sc₂SiO₅ crystal in diode-pumped femtosecond oscillator and regenerative amplifier[J]. Optics Express, 2015, 23(10): 13115-13120.
- [63] Caracciolo E, Pirzio F, Kemnitzer M, et al. 42 W femtosecond Yb : Lu₂O₃ regenerative amplifier [J]. Optics Letters, 2016, 41(15): 3395-3398.
- [64] Huynh J, Smrž M, Miura T, et al. Femtosecond Yb: YGAG ceramic slab regenerative amplifier [J]. Optical Materials Express, 2018, 8(3): 615-621.
- [65] Moran B D, Brent Dane C, Crane J K, et al. Suppression of parasitics and pencil beams in the high-gain national ignition facility multipass preamplifier[J]. Proceedings of SPIE, 1998, 3264: 56-64.
- [66] Zhang Z G. Femtosecond laser technology (optics and photonics series) [M]. Beijing: Science Press, 2011.
 张志刚.飞秒激光技术(光学与光子学丛书)[M].北京:科学出版社, 2011.
- [67] Stuart B C, Feit M D, Rubenchik A M, et al. Laserinduced damage in dielectrics with nanosecond-tosubpicosecond pulses [J]. Physical Review Letters, 1994, 74(12): 2248-2251.
- [68] Huang Y X. Study on slab laser amplifiers thermal effect influence of transmission characteristics [D]. Chengdu: Southwest Jiaotong University, 2012. 黄泳鑫. 板条激光放大器热效应对传输特性影响研究[D]. 成都:西南交通大学, 2012.
- [69] Negel J P, Voss A, Ahmed M A, et al. 1.1 kW average output power from a thin-disk multipass

amplifier for ultrashort laser pulses [J]. Optics Letters, 2013, 38(24): 5442-5445.

- [70] Russbueldt P, Mans T, Weitenberg J, et al. Compact diode-pumped 1.1 kW Yb : YAG Innoslab femtosecond amplifier [J]. Optics Letters, 2010, 35 (24): 4169-4171.
- [71] Schulz M, Riedel R, Willner A, et al. Yb : YAG Innoslab amplifier: efficient high repetition rate subpicosecond pumping system for optical parametric chirped pulse amplification[J]. Optics Letters, 2011, 36(13): 2456-2458.
- [72] Zhao Z G, Cong Z H, Liu Z J. Review on ultrashort pulse laser amplifiers based on bulk Yb-doped gain media[J]. Laser & Optoelectronics Progress, 2020, 57(7), 57: 071605.
 赵智刚,丛振华,刘兆军.基于掺镱块材料的超短脉 冲激光放大器综述[J].激光与光电子学进展, 2020, 57(7), 57: 071605.
- [73] Sun R Y, Jin D C, Tan F Z, et al. High-power all-fiber femtosecond chirped pulse amplification based on dispersive wave and chirped-volume Bragg grating
 [J]. Optics Express, 2016, 24(20): 22806-22812.
- [74] Müller M, Kienel M, Klenke A, et al. 1 kW 1 mJ eight-channel ultrafast fiber laser[J]. Optics Letters, 2016, 41(15): 3439-3442.
- [75] Yan D Y, Liu B W, Song H Y, et al. Research status and development trend of high power femtosecond fiber laser amplifiers [J]. Chinese Journal of Lasers, 2019, 46(5): 0508012.
 [目东钰,刘博文,宋寰宇,等.高功率光纤飞秒激光 放大器的研究现状与发展趋势[J].中国激光, 2019, 46(5): 0508012.
- [76] Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Optics Express, 2011, 19(14): 13218-13224.
- [77] Smith A V, Smith J J. Mode instability in high power fiber amplifiers[J]. Optics Express, 2011, 19 (11): 10180-10192.
- [78] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867.
- [79] Wang T, Zhang J, Zhang N, et al. Research progress in preparation of single crystal fiber and fiber lasers [J]. Laser & Optoelectronics Progress, 2019,56(17): 170611.
 王涛,张健,张娜,等.单晶光纤制备及单晶光纤激光器研究进展[J].激光与光电子学进展, 2019,56 (17): 170611.
- [80] Délen X, Piehler S, Didierjean J, et al. 250 W singlecrystal fiber Yb : YAG laser [J]. Optics Letters,

- [81] Zaouter Y, Martial I, Aubry N, et al. Direct amplification of ultrashort pulses in µ-pulling-down Yb: YAG single crystal fibers [J]. Optics Letters, 2011, 36(5): 748-750.
- [82] Délen X, Zaouter Y, Martial I, et al. Yb : YAG single crystal fiber power amplifier for femtosecond sources[J]. Optics Letters, 2013, 38(2): 109-111.
- [83] Markovic V, Rohrbacher A, Hofmann P, et al. 160 W 800 fs Yb: YAG single crystal fiber amplifier without CPA [J]. Optics Express, 2015, 23 (20): 25883-25888.
- [84] Li F, Yang Z, Lv Z, et al. Hybrid CPA system comprised by fiber-silicate glass fiber-single crystal fiber with femtosecond laser power more than 90 W at 1 MHz[J]. Optics & Laser Technology, 2020, 129: 106291.
- [85] Kienel M, Müller M, Demmler S, et al. Coherent beam combination of Yb : YAG single-crystal rod amplifiers[J]. Optics Letters, 2014, 39(11): 3278-3281.
- [86] Pouysegur J, Weichelt B, Guichard F, et al. Simple Yb : YAG femtosecond booster amplifier using divided-pulse amplification [J]. Optics Express, 2016, 24(9): 9896-9904.
- [87] Lesparre F, Gomes J T, Délen X, et al. Yb : YAG single-crystal fiber amplifiers for picosecond lasers using the divided pulse amplification technique [J]. Optics Letters, 2016, 41(7): 1628-1631.
- [88] Liu Z J, Gao X B, Cong Z H, et al. Crystal fiber and crystal-derived fiber preparation and application: a review[J]. Acta Photonica Sinica, 2019,48(11), 48: 1148003.
 刘兆军,高悉宝,丛振华,等.晶体光纤及晶体衍生光纤制备与应用综述[J].光子学报, 2019,48(11), 48: 1148003.
- [89] Rodin A M, Zopelis E. Comparison of Yb : YAG single crystal fiber with larger aperture CPA pumped at 940 nm and 969 nm [C] // 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), July 31-August 4, 2017, Singapore. New York: IEEE Press, 2017.
- [90] Kuznetsov I, Mukhin I, Palashov O, et al. Thin-rod Yb : YAG amplifiers for high average and peak power lasers [J]. Optics Letters, 2018, 43 (16): 3941-3944.
- [91] Veselis L, Bartulevicius T, Madeikis K, et al. Compact 20 W femtosecond laser system based on fiber laser seeder, Yb : YAG rod amplifier and chirped volume Bragg grating compressor[J]. Optics Express, 2018, 26(24): 31873-31879.

- [92] Veselis L, Bartulevicius T, Madeikis K, et al. Generation of 40 W, 400 fs pulses at 1 MHz repetition rate from efficient, room temperature Yb: YAG double-pass amplifier seeded by fiber CPA system [J]. Proceedings of SPIE, 2020, 1125: 1125925.
- [93] Kim J W, Sall E, Lee B, et al. 8 W 240 fs diodepumped Yb : Y₂O₃ ceramic thin-rod femtosecond amplifier[J]. Optics Express, 2019, 27(22): 31418-31424.
- [94] Hemmer M, Reichert F, Zapata K, et al. Picosecond, 115 mJ energy, 200 Hz repetition rate cryogenic Yb : YAG bulk-amplifier [C] // 2015 Conference on Lasers and Electro-Optics (CLEO), May 10-15, 2015, San Jose, CA, USA. New York: IEEE Press, 2015.
- [95] Mackonis P, Rodin A M. Laser with 1.2 ps, 20 mJ pulses at 100 Hz based on CPA with a low doping level Yb : YAG rods for seeding and pumping of OPCPA[J]. Optics Express, 2020, 28(2): 1261-1268.
- [96] Chang C L, Krogen P, Liang H, et al. Multi-mJ, kHz, ps deep-ultraviolet source[J]. Optics Letters, 2015, 40(4): 665-668.
- [97] Rand D, Miller D, Ripin D J, et al. Cryogenic Yb³⁺doped materials for pulsed solid-state laser applications[J]. Optical Materials Express, 2011, 1 (3): 434-450.
- [98] Rand D A, Shaw S E, Ochoa J R, et al. Picosecond pulses from a cryogenically cooled, composite amplifier using Yb : YAG and Yb : GSAG [J]. Optics Letters, 2011, 36(3): 340-342.
- [99] Zapata L E, Reichert F, Hemmer M, et al. 250 W average power, 100 kHz repetition rate cryogenic Yb: YAG amplifier for OPCPA pumping[J]. Optics Letters, 2016, 41(3): 492-495.
- [100] Demirbas U, Cankaya H, Thesinga J, et al. Efficient, diode-pumped, high-power (> 300 W) cryogenic Yb : YLF laser with broad-tunability (995-1020.5 nm): investigation of E // a-axis for lasing[J]. Optics Express, 2019, 27(25): 36562-36579.
- [101] Cankaya H, Cankaya H, Cankaya H, et al. 190-mJ cryogenically-cooled Yb : YLF amplifier system at 1019.7 nm [J]. OSA Continuum, 2019, 2(12): 3547-3553.
- [102] Chen L H, Yang G W, Liu Y X. Development of semiconductor lasers[J]. Chinese Journal of Lasers, 2020,47(5):0500001.
 陈良惠,杨国文,刘育衔.半导体激光器研究进展[J].中国激光,2020,47(5):0500001.

^{2012, 37(14): 2898-2900.}

- [103] Volkov M R, Kuznetsov I I, Mukhin I B, et al. Thin-rod active elements for amplification of femtosecond pulses [J]. Quantum Electronics, 2019, 49(4): 350-353.
- [104] Kaksis E, Almási G, Fülöp J A, et al. 110-mJ 225fs cryogenically cooled Yb : CaF₂ multipass amplifier [J]. Optics Express, 2016, 24 (25): 28915-28922.

Progress on Yb-Doped All-Solid-State Femtosecond Laser Amplifier with High Repetition Rate

Bai Chuan¹, Tian Wenlong¹, Wang Geyang¹, Zhen Li¹, Xu Rui¹, Zhang Dacheng¹, Wang Zhaohua², Zhu Jiangfeng^{1*}, Wei Zhiyi²

¹School of Physics and Optoelectronic Engineering, Xidian University, Xi'an, Shaanxi 710071, China;

 $^{\rm 2}$ Beijing National Laboratory for Condensed Matter Physics , Institute of Physics ,

Chinese Academy of Sciences, Beijing 100190, China

Abstract

Significance In 2018, Gerard Mourou and Donna Strickland were awarded the Nobel Prize in Physics for their work on chirped pulse amplification (CPA) technology, which provides a reliable concept for improvement in femtosecond-laser energy. Ti : sapphire femtosecond amplifiers have been developed using CPA technology and are widely used in the fields of attosecond science, and strong-field physics. Due to the limitations of pump power and thermal management, the repetition rate of Ti:sapphire amplifiers is typically less than 100 kHz. However, high-repetition-rate amplifiers at several hundred kilohertz and megahertz are essential for some scientific and industrial applications, such as XUV optical-frequency combing, high-flux high-harmonic generation, angle-resolved photoemission spectroscopy, and micromachining. Under a fixed pulse energy, work at a high repetition rate means work at a high average power, which causes severe thermal issues.

With the rapid development of diode-pumping technology since the 1990, all-solid-state Yb femtosecond lasers have opened up a new path for the generation of high-power ultrashort laser pulses. Yb-doped lasers are very promising for high-power ultrashort-pulse generation due to their ability to be pumped by readily available high-power diode lasers, their intrinsically high efficiency and narrow pulse width made possible by their simple energy-level diagram, and their broad emission bandwidth and low quantum defect. Moreover, Yb-doped laser materials possess higher gain and thermal conductivity at cryogenic temperatures than at room temperature, enabling much higher output powers. Some Yb-doped materials with emission cross sections broad enough for femtosecond-pulse amplification include Yb : YAG, Yb : KGW, Yb : KYW, Yb : CaF_2 , and Yb : CGA; these were evaluated and found to have potential for use in high-repetition-rate amplifiers (Table 1). In combination with cryogenic refrigeration and traveling-wave amplification (Fig. 5), the average power can reach several hundred watts.

Progress The key technical bottlenecks arise from thermal management of gain media and the gain-narrowing effects that accompany high-repetition-rate femtosecond amplification. Thus, the technical routes and research progress on amplifiers with different gain media are comprehensively summarized with reference to previous research on regenerative and traveling-wave amplifiers. For regenerative amplifiers (Fig. 1), Caracciolo's research group at the University of Pavia, Italy, has made pioneering contributions using crystals of Yb : Lu_2O_3 , Yb : CGA, and Yb : CaF_2 . Pouysegur's research group from University of Paris-Sud reported on the first sub-100-fs regenerative amplifier based on an Yb-doped bulk gain medium (Fig. 3). For hundred kilohertz and above, traveling-wave amplification is one of the most effective ways to further enhance the power to mJ level and even higher. Thin-disk and slab technologies have proven to be very efficient and enable high output powers in the ultrashort regime with up to several kW of output power because of their thermal-management advantages. However, their inherently complex amplifier setups undermine their stability and wider industrial applicability. Single-crystal fiber is a promising alternative with a compact size, greater simplicity, and lower cost compared with other such technologies for obtaining several hundred watts of output power. In addition, most lasers are dominated by Yb : YAG crystals; other Yb materials are also used in traditional rod amplifiers. Thermal effect and amplified efficiency of rod amplifiers are outstanding difficulties that need to be solved urgently. Among currently available technologies, diode-pumped

cryogenically cooled solid-state amplifiers have emerged as the most promising alternative for achieving an output power of hundreds of watts with a rod amplifier. Zapata at the Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron increased the output power of the Yb : YAG rod amplifier to 250 W (Fig. 9). Due to the gain bandwidth of Yb : YAG at low temperature, a femtosecond pulse is still difficult to achieve. Therefore, research on simple and versatile high-power amplifiers for femtosecond-pulsed operation is still ongoing. The problems faced in this field and our ongoing research are discussed.

Conclusions and Prospects Ultrafast pulse-laser amplifiers based on an Yb-doped laser medium can reach new heights of amplification efficiency and output power due to the development of efficient diode-pumping technology and the emergence of various new laser media. In the near future, we expect that the amplification system will serve in both scientific and industrial applications. Combining the current development trend of an all-solid-state ultrashort laser with the research basis of our group, we recognize the prospect of achieving a femtosecond laser with an output power of >100 W using new Yb-doped laser crystals and cryogenic technology.

Key words laser optics; high repetition rate; regenerative amplifier; traveling-wave amplifier; Yb-doped gain medium

OCIS codes 140.3280; 140.3480; 140.3615; 140.7090